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The equivalent heat conductivity of the carbon nanotube (CNT) composites is usually 
evaluated using a representative volume element (RVE) with one or several CNTs 
embedded. For realistic modeling a large number of CNTs included in the RVE are 
necessary. However, analysis of such an RVE using mesh-based methods may face severe 
difficulties in discretization of the geometry. In this paper, the numerical method of choice 
is the hybrid boundary node method (Hybrid BNM), due to its boundary-only and meshless 
nature. To deal with the extremely large computational scale, the Hybrid BNM can be 
accelerated by fast multipole method (FMM) based on a simplified mathematical model 
which has been proposed especially for thermal analysis of CNT-based composites. A 
computer code written in C++ is developed and then employed for computing RVEs 
containing a number of CNTs with different alignments. It is concluded that some specific 
alignments may significantly increase the equivalent heat conductivity 
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1. Introduction 

Carbon nanotubes (CNT) possess exceptional physical 
properties such as superior thermal and electrical 
conductivities, as well as high stiffness and strength [1]. 
These remarkable physical properties make CNTs promising 
in engineering applications, such as development of 
fundamentally new composite materials, and heat transport 
management in miniature device components. CNT-based 
composites offer significant improvements to performance 
over their base polymers. This study aims at gaining insight 
into the thermal properties of CNT-based composites 
through numerical simulation. The equivalent heat 
conductivity of carbon nanotube-based composites is 
evaluated using a representative volume element (RVE) 
based on 3-D potential theory. 

For the analysis of an RVE in which not only single but 
many CNTs are randomly distributed, the implementation of 
standard numerical solution techniques like FEM or BEM 
may face severe difficulties in discretization of the domain 
geometry in question. This is valid especially for FEM 
models where meshing of the solid geometries within CNT-
reinforced polymers may be tedious and extremely difficult. 
To alleviate this difficulty the hybrid boundary node method 
(Hybrid BNM) can be used [2]. By combining a modified 
functional with the moving least squares (MLS) 
approximation, the Hybrid BNM is a truly meshless, 
boundary-only method. We have combined the Hybrid 
BNM with a multi-domain solver and applied the combined 
approach to perform some preliminary computations and 
investigate the influences of the CNT length, curvature and 
dispersion on the equivalent thermal properties of the 

composites [3, 4].  
However, these computations are limited to relatively 

small scales, as usually only single or several but shorter 
CNTs were considered. Due to the very thin and slender 
structure of the CNTs, a large number of nodes are required 
to discretize them in order to capture the steep gradients. 
Moreover, in a multi-domain solver, at each node on the 
interface of a CNT with the host polymer, both temperature 
and normal flux are unknown. This situation considerably 
increases the total degrees of freedom in the overall system 
of equations.  

The preliminary studies have also shown that temperatures 
within the entire CNT are almost uniform due to the huge 
difference of heat conductivity between the CNT and the 
host polymer. Based on this observation, we have proposed 
a simplified mathematical model, where the CNTs are 
considered as heat superconductors and uniform temperature 
distributions within the entire body of each CNT assumed 
[5]. As a result, the total number of degrees of freedom is 
reduced by half, and thus increases the number of CNTs 
contained in an RVE that can be analyzed within available 
computer resources. The simplified model has been 
rigorously tested and validated using benchmark examples. 

Nevertheless, even with the simplified model, both the 
memory requirements and the computational scale are still 
of O(N2), (when an iterative solver applied, if a direct solver, 
the Gauss elimination for example, is used, the 
computational scale is even higher up to O(N3)), where N 
stands for the total number of degrees of freedom. To 
perform analysis of a real-world RVE model, an efficient 
technique further reducing computational requirements is 
necessary. The method of choice is FMM. 



 

The FMM was introduced by Rokhlin [6], and developed 
by Greengard [7] as an algorithm for the rapid evaluation of 
Coulombic interactions in a large scale ensemble of particles. 
In their method, multipole moments are used to represent 
distant particle groups, a local expansion to evaluate the 
contribution from distant particles in the form of a series, 
and a hierarchical decomposition of the domain to carry out 
efficient and systematic grouping of the particles. The FMM 
reduces both memory size and computational scale from 
O(N2) to O(N), thus enabling scientific and engineering 
computations that were previously impossible. 

The FMM has been applied to a variety of computation 
methods. Applying FMM to accelerate BEM computation 
has been investigated by many researchers [8]. In this paper, 
the FMM techniques are implemented into the Hybrid BNM 
based on the simplified model for simulation of thermal 
behavior of CNT-based composites. RVEs containing a 
number of CNTs with different lengths, shapes and 
alignments, have been studied. It is realized that some 
specific alignments may significantly increase the equivalent 
heat conductivity of the composites.  

2. Hybrid BNM formulation for the simplified model 

As mentioned in the introduction, the unusually high heat 
conductivity of the CNTs in comparison with the polymer 
makes the temperature distribution within an individual 
CNT almost uniform. This feature allows us to simplify the 
modeling of the CNT-based composites. In this section the 
formulations for the simplified mathematical model are 
developed, where only single domain, namely the polymer 
matrix is modeled. Each CNT is treated as a heat 
superconductor with one constant temperature constrained at 
its surface. A similar assumption can be found in a rigid-line 
inclusion model [9]. 

Suppose that n CNTs are distributed in a polymer matrix 
which makes an RVE. It is assumed that the matrix is 
continua of linear, isotropic and homogenous materials with 
given heat conductivities. A steady state heat conduction 
problem governed by Laplace’s equation with proper 
boundary conditions is considered. 

The Hybrid BNM is based on a modified variational 
principle, in which there are three independent variables, 
namely: 

- temperature within the domain, φ ; 

- boundary temperature, φ ; 
- boundary normal heat flux, q~ . 

Suppose further that N nodes are randomly distributed on 
the surfaces (including the interfaces with CNTs) of the 
polymer domain. The temperature within the domain is 
approximated using fundamental solutions as follows: 
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and hence the normal heat flux is given by: 
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where s
Jφ  is the fundamental solution with the source at a 

node sJ, κ  is the heat conductivity and xJ are unknown 
parameters. For 3-D steady state heat conduction problems, 
the fundamental solution can be written as 
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where Q is a field point; r(Q, sJ) is the distance between Q 
and sJ. 

The boundary temperature and normal heat flux are 
approximated by moving least square (MLS) approximation: 
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In the foregoing equations, ( )JΦ s  is the shape function of 

MLS approximation; Ĵφ  and ˆJq  are nodal values of 
temperature and normal flux, respectively.  
For the polymer domain, the following set of Hybrid BNM 
equations can be written: 
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where subscripts 0 and ( 1, , )k n= , stand for quantities 
exclusively associated with the polymer domain, and  
quantities associated with its interface with the k-th 
nanotube, respectively. The sub-matrices[ ]U , [ ]V  and [ ]H  
are given as: 
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where IΓ is a regularly shaped local region around a 
collocation node sI, vI is a weight function and s is a field 
point on the boundary. For full details of Hybrid BNM refer 
to [2]. 

By combining Eqs. (6) and (7), we have the following 
equation: 
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where, each row of sub-matrices 0 , 0,1, ,k k n  = A , is 

supplied identically from that in 0k  U  or 0k  V  according 

to the boundary condition at the corresponding node, and the 
corresponding term of { }0d  comes from { }0φ̂  or { }0q̂ .  



 

Further suppose that mk nodes are located at the interface 
of k-th nanotube with the polymer, and a constant 
temperature k

cφ  is prescribed, namely  

{ } { }ˆ k
k ck φ= 1φ                                (12) 

where { }ˆ
kφ is the nodal values of temperature at the 

interface; { }k1  is a column vector of mk dimensions with all 
the elements equal 1. Inserting Eq. (12) into Eq. (11) for all 
interfaces, the following equation is obtained, 
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In the above set of equations, there are n (the number of 
CNTs) more unknowns than the number of equations, 
because we have introduced one additional unknown, i.e. the 
constant temperature, for each CNT. In order to solve Eq. 
(13), we have to add n extra equations. These equations can 
be obtained from energy conservation law. Actually, in 
steady state heat conduction, the rate of thermal energy 
flowing into a CNT must equal that flowing out. Therefore, 
the following relationship exists at the surface of the k-th 
CNT, 

0
kC
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where Ck represents the outer surface of the k-th CNT. 
Substituting Eq. (2) into (14) and omitting the common 
factor κ, we have 
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In Eq. (15), Ck is a closed surface. The following integral 
identity [10] holds, 
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Therefore, the coefficients in Eq. (15) are either 1 or 0. For 
nodes located on the surface of the k-th CNT, they are 1, 
otherwise they are 0. Appending Eq. (15) to Eq. (13) for all 
CNTs, we obtain the final set of algebraic equations system 
which can uniquely determine the unknown parameter x. 
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The total number of degrees of freedom in Eq. (17) is 
relatively very small when compared with that of a full 
model (multi-domain solver, see [5]). For each CNT, only 
one algebraic equation is added. Moreover, as the 
coefficients of these algebraic equations are either 1 or 0, 

calculations of them are avoided. Therefore, both the CPU 
time and memory usage can be saved significantly.  

The set of Eq. (17) is solved for the unknown parameters x, 
and then, by back-substitution into Eqs. (6) and (7), the 
boundary unknowns are obtained either on the interfaces or 
the external boundary surfaces. As demonstrated, the Hybrid 
BNM is a boundary-only meshless approach. No boundary 
elements are used for either interpolation or integration 
purposes. Therefore, it may alleviate the discretization task 
to a large extent for complicated geometries. 

3. Accelerating equation solution by FMM 

The size of the coefficient matrix in Eq. (17) is dominated 
by sub-matrices 0k  A  and ki  U , 1, ,k n= , 0,1, ,i n= . 

Since these sub-matrices are unsymmetrical and fully 
populated, solving Eq. (17) by an iterative solver requires 
O(N2) operations. In this paper, we use the restarted 
preconditioned GMRES to solve Eq. (17). The most time-
consuming aspect of an iterative method when employed for 
solving a system of linear equations is the matrix-vector 
product in each iteration step. Taking an iteration vector ′x  
into account, the product of a row of the coefficient matrix 
in Eq. (17) and the guess vector ′x  can be expressed as one 
of the following four sums:  
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Sums (18) and (19) are related to a node located on the 
external boundary and prescribed with temperature and 
normal flux, respectively. Sum (20) is related to a node 
located at the interface of the k-th CNT with the polymer 
domain, and Expression (21) to the k-th uniform temperature 
constraint. 
The computational costs for the second term in sum (20) and 
sum (21) are trivial, and can be ignored. This section will 
mainly focus on how to accelerate summations (18) and (19) 
by means of FMM. For this purpose, we first construct a 
hierarchy of boxes which refine the computational domain 
into smaller and smaller regions. At refinement level 0, we 
have the entire computational domain. Refinement level l+1 
is obtained recursively from level l by subdivision of each 
into eight equal parts. This yields a natural tree structure, 
where the eight boxes at level l+1 obtained by subdivision of 
a box at level l are considered its children. We stop the box 
subdivision if the number of nodes included in the box is 
smaller than a given value. If a child box contains no node, 
we delete it. A childless box is called a leaf. We call two 
boxes neighbors if they are at the same level and share at 
least a vertex, or well separated when they are at the same 
level but not neighbors. With each box b we associate an 
interaction list, consisting of the children of the neighbors of 
b’s parent which are well separated from box b. 

For simplicity only, we will ignore for a moment the 
summation (19). Suppose the boundary node sJ belongs to a 



 

leaf of the hierarchical tree of boxes. We divide sum (18) 
into two parts: the sum of the contributions of the nodes 
contained in the neighbors of the leaf (these nodes are called 
near nodes), and that of the nodes that are outside all the 
neighbors (these nodes are called far nodes). Eq. (18) can 
then be rewritten as [7] 
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where Nnear and Nfar are the numbers of the near nodes and 
far nodes, respectively. 

We will compute the sum for the near nodes directly, 
while use multipole expansions to speed up the summation 
for the far nodes. Consider two leafs Bfar and Blocal which are 
well separated. Blocal contains node sI and Bfar contains Nb 
nodes. The fundamental solution is first expanded into a 
spherical harmonic series as 
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where ( , ,r θ φ ) and ( , ,ρ α β ) are the spherical coordinates 
of  Q and sJ, respectively, with the origin of the coordinate 
system located at the center of Bfar. Obviously, r ρ> . The 
function ( , )m

nY x y  is defined by 
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with m
nP  defined by Rodrigues’ formula (see [7]). 

Then, the far field sum in (22) for the nodes inside Bfar can 
be obtained by 
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where m
nM  is called multipole moments and given by 
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Now we move the origin of the spherical coordinate 
system to the center of Blocal, and suppose that the 
coordinates of Bfar’s center and the node sI are ( , ,r θ φ′ ′ ′ ) 
and ( , ,ρ α β′ ′ ′ ), respectively, 1( , )m n

nY rθ φ + can be further 
expanded in terms of spherical harmonics as [7] 
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Eq. (24) becomes 
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where k
jL  is given by 
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As Bfar and Blocal are well separated, 2rρ′ ′>  is 
guaranteed. Eq.(27) is usually called far to near translation. 
If  Bfar belongs to the interaction list of Blocal, we compute 
the sum (26) using Eq. (26) directly. Else if Bfar’s father 
belongs to the interaction list of Blocal’s father, we first 
translate m

nM  into k
jM ′  which is about the center of Bfar’s 

father, by [7] 
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where ( , ,ρ α β ) are coordinates of Bfar’s center with the 
origin located at the center of Bfar’s father. 

We then translate k
jM ′  into m

nL′  by Eq. (27), finally 

translate m
nL ′  into k

jL  from father to child using the 
following equation [7]: 
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where ( , ,ρ α β ) are coordinates of Blocal’s center with the 
origin located at the center of Blocal’s father. 
Eqs. (29) and (30) are called far to far and near to near 
translation, respectively. 

If a box of Bfar’s ancestor at level l belongs to the 
interaction list of Blocal’s ancestor, the above process is 
recursively repeated until level l. This scheme guarantees 
that all the far to near conversions are performed between a 
box and its interaction list, and hence the condition 2rρ′ ′>  
required by Eq. (27) is ensured.  

The computing process for the far field sum (19) is the 
same as sum (18), except that Eq. (26) is replaced by 
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So far we have described the process of summations (18) 
and (19) for a cluster of nodes contained in a leaf Bfar, with 
respect to a node sI included in another leaf Blocal which is 
well separated from Bfar. In actual computations, the 
summations are not performed separately for each pair of 
well separated boxes. Systematically, the fast multipole 
algorithm begins with the finest level, from where the 
multipole moments are shifted to the centers of the cubes 
and combined, so that a single expansion represents all of 
the nodes in the cube. During an upward pass through the 
tree to the root, each child cube’s multipole expansions is 
shifted to its parent’s center, to generate a single expansion 
which represents all of the nodes in the parent cube. In an 
interaction phase, at each level a local expansion is created 
for each cube by accumulating multipole expansions 
representing distant cubes at that level. In a downward pass, 
the local expansions in the parent cubes are shifted to the 
centers of their children. Finally, in an evaluation phase, the 
local expansions and direct contributions from nearby nodes 
are evaluated at the collocation points. 



 

4. Study on thermal behavior of CNT-based composites 

In this section, we use an RVE to study the CNT-based 
composites for their thermal properties. The RVE are 
modeled with straight or curved CNTs embedded, and with 
properly applied boundary conditions. A rectangular RVE is 
employed with the dimensions shown in Fig. 1. Based on the 
simplified mathematical model, the CNTs are treated as 
cavities which are identical to the outer surfaces of the 
CNTs. A constant temperature is constrained at a cavity 
surface. The radii of CNTs (R=5 nm) are kept constant in all 
the following examples, while their length and shapes, 
together with the number of CNTs and their alignments, 
varies for different examples. The heat conductivity, pκ , 
used for the polymer (polycarbonate) is 0.37 W/m·K.  

 

Figure 1: A Nanoscale RVE. 

Computations are performed on a desktop computer with an 
Intel(R) Pentium(R) 4 CPU (1.99GHz). Following 
Reference [8], we truncate all the infinite expansions after 
p=10, set the maximum number of boundary nodes in a leaf 
box to be 60, and terminate the iteration when the relative 
error is less than 10-6. 

 

Figure 2: An RVE including a sinusoidal CNT. 

4.1 Accuracy of the FMM 

First, we will examine the accuracy of the proposed 
method.  An RVE with a sinusoidal CNT embedded is used 
in this study. Fig. 2 shows the geometry. As there is no 
analytical solution existing for the simplified model, we 
impose Dirichlet boundary condition on all the surfaces, 
including cavity, according to the following exact solution: 

3 3 3 2 2 23 3 3u x y z yx xz zy= + + − − −                 (33) 
then solve the problem using Eqs. (6) and (7). This set up 
can, actually, check the accuracy of the FMM, only. The 
simplified mathematical model has been rigorously 
validated in [5]. The relative error is evaluated over all the 
boundary nodes using a ‘global’ L2 norm error defined as 

( ) ( ) 2

1max

1 1 ( )
N

e n
i i

i
e q q

q N =

= −∑          (34) 

where max
q  is the maximum nodal value of normal flux, the 

superscripts (e) and (n) refer to the exact and numerical 
solutions, respectively.  

The relative errors as a function of the number of nodes 
used are presented in Fig.3. With increasing number of 
nodes, higher accuracy is achieved. Results also indicate that 
the proposed method can perform large scale computations. 
Therefore, it can be employed for advanced analysis of the 
CNT-based composites. 

 

Figure 3: Relative error for normal flux. 

4.2 CNT alignments in an RVE 

In References [3, 4], we have performed some preliminary 
computations using an RVE containing one or a few short 
CNT(s). In this section, we carry out more advanced 
simulations using the proposed approach, where an RVE 
contains more and longer CNTs. Uniform temperatures of 
300K and 200K (see Fig. 1) are imposed at the two end 
faces of the RVE, respectively, and heat flux free at other 
four side faces. This boundary condition set allows us to 
estimate equivalent heat conductivity of the composite in the 
axial direction. Using Fourier’s law, the formula for 
equivalent heat conductivity can be written as 

qLκ
φ

= −
∆

                                (35)
 

where κ represents the heat conductivity; q is the heat flux 
density, L the length of the RVE in the axial direction and 
φ∆  the temperature difference between the two end faces. 
Fifteen RVEs containing different numbers of CNTs with 

different shapes, alignments, have been considered. These 
RVEs are sorted into three groups according to their shape 
and alignment, and presented in Figures 4-6. The first group 
consists of RVEs including straight CNTs in parallel 
alignment. In the RVEs of the second group, two more 
vertically aligned CNTs are added. The third group includes 
RVEs with curved CNTs embedded. Results of our 
experiments are summarized in Tables 1-3. In each table, the 
first row indicates the alignment of CNTs. The second, third 
and fourth rows list the volume fraction of CNT, equivalent 
heat conductivity and increase of conductivity over the 
matrix, respectively. To assess the enhancement 
effectiveness, we use as the criterion the ratio of the 
equivalent heat conductivity to the volume percentage, 
which is presented in the fifth row of each table.  

         

(a)             (b)             (c)               (d)                 (e) 

Figure 4: RVEs including straight CNTs, alignment 1. 



 

         

(f)             (g)             (h)               (i)                 (j) 

Figure 5: RVEs including straight CNTs, alignment 2. 

         

(k)             (l)             (m)               (n)                 (o) 

Figure 6: RVEs including curved CNTs, alignment 3. 

Results in Table 1 show that with the increase in the 
number of CNTs, the equivalent conductivity also increases, 
while the effectiveness of enhancement decreases. Table 2 
shows quite similar results. However, their enhancements 
are smaller than group 1. In Table 3, it is interesting to note 
that the case (k) gives the highest values of both the ratio 
and the equivalent heat conductivity, which is much higher 
than that obtained for models with straight CNTs. The 
equivalent heat conductivity is 21 times that of the polymer.  

Table 1: Equivalent heat conductivities for RVEs in group 1. 

 

Table 2: Equivalent heat conductivities for RVEs in group 2. 

 

Table 3: Equivalent heat conductivities for RVEs in group 3. 

 

5. Concluding remarks 

In this paper, formulations of a simplified mathematical 
model for simulation of thermal behavior of CNT-based 
composites are presented. The model provides remarkable 

improvement in computational efficiency. The FMM is 
employed to further reduce the computational costs. 

The proposed approach has been validated concerning a 
numerical example and applied to study CNT distribution in 
the polymer. It is concluded that dispersion of CNTs has a 
strong influence on the thermal properties of the composite. 
Some specific alignments were found that they significantly 
increase the equivalent heat conductivity of the composite. 
From the computations, one can expect that, with longer and 
properly aligned CNTs, it is possible to make a CNT-based 
composite with the heat conductivity close to that of metals. 
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